Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Prostate ; 84(5): 441-459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38168866

RESUMO

BACKGROUND: The medical therapy of prostatic symptoms (MTOPS) trial randomized men with symptoms of benign prostatic hyperplasia (BPH) and followed response of treatment with a 5α-reductase inhibitor (5ARI), an alpha-adrenergic receptor antagonist (α-blocker), the combination of 5ARI and α-blocker or no medical therapy (none). Medical therapy reduced risk of clinical progression by 66% but the reasons for nonresponse or loss of therapeutic response in some patients remains unresolved. Our previous work showed that prostatic glucocorticoid levels are increased in 5ARI-treated patients and that glucocorticoids can increased branching of prostate epithelia in vitro. To understand the transcriptomic changes associated with 5ARI treatment, we performed bulk RNA sequencing of BPH and control samples from patients who received 5ARI versus those that did not. Deconvolution analysis was performed to estimate cellular composition. Bulk RNA sequencing was also performed on control versus glucocorticoid-treated prostate epithelia in 3D culture to determine underlying transcriptomic changes associated with branching morphogenesis. METHOD: Surgical BPH (S-BPH) tissue was defined as benign prostatic tissue collected from the transition zone (TZ) of patients who failed medical therapy while control tissue termed Incidental BPH (I-BPH) was obtained from the TZ of men undergoing radical prostatectomy for low-volume/grade prostatic adenocarcinoma confined to the peripheral zone. S-BPH patients were divided into four subgroups: men on no medical therapy (none: n = 7), α-blocker alone (n = 10), 5ARI alone (n = 6) or combination therapy (α-blocker and 5ARI: n = 7). Control I-BPH tissue was from men on no medical therapy (none: n = 8) or on α-blocker (n = 6). A human prostatic cell line in 3D culture that buds and branches was used to identify genes involved in early prostatic growth. Snap-frozen prostatic tissue taken at the time of surgery and 3D organoids were used for RNA-seq analysis. Bulk RNAseq data were deconvoluted using CIBERSORTx. Differentially expressed genes (DEG) that were statistically significant among S-BPH, I-BPH, and during budding and branching of organoids were used for pathway analysis. RESULTS: Transcriptomic analysis between S-BPH (n = 30) and I-BPH (n = 14) using a twofold cutoff (p < 0.05) identified 377 DEG (termed BPH377) and a cutoff < 0.05 identified 3377 DEG (termed BPH3377). Within the S-BPH, the subgroups none and α-blocker were compared to patients on 5ARI to reveal 361 DEG (termed 5ARI361) that were significantly changed. Deconvolution analysis of bulk RNA seq data with a human prostate single cell data set demonstrated increased levels of mast cells, NK cells, interstitial fibroblasts, and prostate luminal cells in S-BPH versus I-BPH. Glucocorticoid (GC)-induced budding and branching of benign prostatic cells in 3D culture was compared to control organoids to identify early events in prostatic morphogenesis. GC induced 369 DEG (termed GC359) in 3D culture. STRING analysis divided the large datasets into 20-80 genes centered around a hub. In general, biological processes induced in BPH supported growth and differentiation such as chromatin modification and DNA repair, transcription, cytoskeleton, mitochondrial electron transport, ubiquitination, protein folding, and cholesterol synthesis. Identified signaling pathways were pooled to create a list of DEG that fell into seven hubs/clusters. The hub gene centrality was used to name the network including AP-1, interleukin (IL)-6, NOTCH1 and NOTCH3, NEO1, IL-13, and HDAC/KDM. All hubs showed connections to inflammation, chromatin structure, and development. The same approach was applied to 5ARI361 giving multiple networks, but the EGF and sonic hedgehog (SHH) hub was of particular interest as a developmental pathway. The BPH3377, 5ARI363, and GC359 lists were compared and 67 significantly changed DEG were identified. Common genes to the 3D culture included an IL-6 hub that connected to genes identified in BPH hubs that defined AP1, IL-6, NOTCH, NEO1, IL-13, and HDAC/KDM. CONCLUSIONS: Reduction analysis of BPH and 3D organoid culture uncovered networks previously identified in prostatic development as being reinitiated in BPH. Identification of these pathways provides insight into the failure of medical therapy for BPH and new therapeutic targets for BPH/LUTS.


Assuntos
Inibidores de 5-alfa Redutase , Hiperplasia Prostática , Masculino , Humanos , Inibidores de 5-alfa Redutase/farmacologia , Inibidores de 5-alfa Redutase/uso terapêutico , Próstata/patologia , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/genética , Hiperplasia Prostática/patologia , Procedimentos Clínicos , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Interleucina-13/uso terapêutico , Interleucina-6 , Proteínas Hedgehog , Antagonistas Adrenérgicos alfa/uso terapêutico , Perfilação da Expressão Gênica , Quimioterapia Combinada , Cromatina
2.
Prostate ; 82(14): 1378-1388, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35821619

RESUMO

BACKGROUND: The development of benign prostatic hyperplasia (BPH) and medication-refractory lower urinary tract symptoms (LUTS) remain poorly understood. This study attempted to characterize the pathways associated with failure of medical therapy for BPH/LUTS. METHODS: Transitional zone tissue levels of cholesterol and steroids were measured in patients who failed medical therapy for BPH/LUTS and controls. Prostatic gene expression was measured using qPCR and BPH cells were used in organoid culture to study prostatic branching. RESULTS: BPH patients on 5-α-reductase inhibitor (5ARI) showed low levels of tissue dihydrotestosterone (DHT), increased levels of steroid 5-α-reductase type II (SRD5A2), and diminished levels of androgen receptor (AR) target genes, prostate-specific antigen (PSA), and transmembrane serine protease 2 (TMPRSS2). 5ARI raised prostatic tissue levels of glucocorticoids (GC), whereas alpha-adrenergic receptor antagonists (α-blockers) did not. Nuclear localization of GR in prostatic epithelium and stroma appeared in all patient samples. Treatment of four BPH organoid cell lines with dexamethasone, a synthetic GC, resulted in budding and branching. CONCLUSIONS: After failure of medical therapy for BPH/LUTS, 5ARI therapy continued to inhibit androgenesis but a 5ARI-induced pathway increased tissue levels of GC not seen in patients on α-blockers. GC stimulation of organoids indicated that the GC receptors are a trigger for controlling growth of prostate glands. A 5ARI-induced pathway revealed GC activation can serve as a master regulator of prostatic branching and growth.


Assuntos
Sintomas do Trato Urinário Inferior , Hiperplasia Prostática , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Inibidores de 5-alfa Redutase/farmacologia , Di-Hidrotestosterona/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Sintomas do Trato Urinário Inferior/patologia , Masculino , Proteínas de Membrana/metabolismo , Próstata/patologia , Hiperplasia Prostática/genética
3.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35409390

RESUMO

The present studies were conducted to evaluate key serum proteins and other components that mediate anchorage-independent growth (3-D growth) of LNCaP prostate cancer cells as spheroids. The cells were cultured on ultra-low attachment plates in the absence and presence of fetuin-A and with or without extracellular vesicles. The data show that fetuin-A (alpha 2HS glycoprotein) is the serum protein that mediates 3-D growth in these cells. It does so by sequestering extracellular vesicles of various sizes on the surfaces of rounded cells that grow as spheroids. These vesicles in turn transmit growth signals such as the activation of AKT and MAP kinases in a pattern that differs from the activation of these key growth signaling pathways in adherent and spread cells growing in 2-D. In the process of orchestrating the movement and disposition of extracellular vesicles on these cells, fetuin-A is readily internalized in adhered and spread cells but remains on the surfaces of non-adherent cells. Taken together, our studies suggest the presence of distinct signaling domains or scaffolding platforms on the surfaces of prostate tumor cells growing in 3-D compared to 2-D.


Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Vesículas Extracelulares/metabolismo , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Transdução de Sinais , alfa-2-Glicoproteína-HS/metabolismo , alfa-Fetoproteínas/metabolismo
4.
Cancer Lett ; 525: 46-54, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34610416

RESUMO

Sterol regulatory element-binding protein 1 (SREBP-1), a master transcription factor in lipogenesis and lipid metabolism, is critical for disease progression and associated with poor outcomes in prostate cancer (PCa) patients. However, the mechanism of SREBP-1 regulation in PCa remains elusive. Here, we report that SREBP-1 is transcriptionally regulated by microRNA-21 (miR-21) in vitro in cultured cells and in vivo in mouse models. We observed aberrant upregulation of SREBP-1, fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC) in Pten/Trp53 double-null mouse embryonic fibroblasts (MEFs) and Pten/Trp53 double-null mutant mice. Strikingly, miR-21 loss significantly reduced cell proliferation and suppressed the prostate tumorigenesis of Pten/Trp53 mutant mice. Mechanistically, miR-21 inactivation decreased the levels of SREBP-1, FASN, and ACC in human PCa cells through downregulation of insulin receptor substrate 1 (IRS1)-mediated transcription and induction of cellular senescence. Conversely, miR-21 overexpression increased cell proliferation and migration; as well as the levels of IRS1, SREBP-1, FASN, and ACC in human PCa cells. Our findings reveal that miR-21 promotes PCa progression by activating the IRS1/SREBP-1 axis, and targeting miR-21/SREBP-1 signaling pathway can be a novel strategy for controlling PCa malignancy.


Assuntos
Proteínas Substratos do Receptor de Insulina/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Acetil-CoA Carboxilase/genética , Animais , Proliferação de Células/genética , Progressão da Doença , Ácido Graxo Sintase Tipo I/genética , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Neoplasias da Próstata/patologia , Transdução de Sinais
5.
Transl Oncol ; 14(11): 101213, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34461557

RESUMO

Clinical management of castration-resistant prostate cancer (CRPC) resulting from androgen deprivation therapy (ADT) remains challenging. Many studies indicate that androgen receptor splice variants (ARVs) play a critical role in the development of CRPC, including resistance to the new generation of inhibitors of androgen receptor (AR) action. ARVs are constitutively active and lack the ligand-binding domain (LBD), thereby allowing prostate cancer (PC) to maintain AR activity despite therapies that target the AR (full-length AR; AR-FL). Previously, we have reported that long-term ADT increases the neuroendocrine (NE) hormone - Gastrin Releasing Peptide (GRP) and its receptor (GRP-R) expression in PC cells. Further, we demonstrated that activation of GRP/GRP-R signaling increases ARVs expression by activating NF-κB signaling, thereby promoting cancer progression to CRPC. Most importantly, as a cell surface protein, GRP-R is easily targeted by drugs to block GRP/GRP-R signaling. In this study, we tested if blocking GRP/GRP-R signaling by targeting GRP-R using GRP-R antagonist is sufficient to control CRPC progression. Our studies show that blocking GRP/GRP-R signaling by targeting GRP-R using RC-3095, a selective GRP-R antagonist, efficiently inhibits NF-κB activity and ARVs (AR-V7) expression in CRPC and therapy-induced NEPC (tNEPC) cells. In addition, blocking of GRP/GRP-R signaling by targeting GRP-R can sensitize CRPC cells to anti-androgen treatment (such as MDV3100). Further, preclinical animal studies indicate combination of GRP-R antagonist (targeting ARVs) with anti-androgen (targeting AR-FL) is sufficient to inhibit CRPC and tNEPC tumor growth.

6.
Prostate ; 81(13): 944-955, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288015

RESUMO

BACKGROUND: Little is known about how benign prostatic hyperplasia (BPH) develops and why patients respond differently to medical therapy designed to reduce lower urinary tract symptoms (LUTS). The Medical Therapy of Prostatic Symptoms (MTOPS) trial randomized men with symptoms of BPH and followed response to medical therapy for up to 6 years. Treatment with a 5α-reductase inhibitor (5ARI) or an alpha-adrenergic receptor antagonist (α-blocker) reduced the risk of clinical progression, while men treated with combination therapy showed a 66% decrease in risk of progressive disease. However, medical therapies for BPH/LUTS are not effective in many patients. The reasons for nonresponse or loss of therapeutic response in the remaining patients over time are unknown. A better understanding of why patients fail to respond to medical therapy may have a major impact on developing new approaches for the medical treatment of BPH/LUTS. Prostaglandins (PG) act on G-protein-coupled receptors (GPCRs), where PGE2 and PGF2 elicit smooth muscle contraction. Therefore, we measured PG levels in the prostate tissue of BPH/LUTS patients to assess the possibility that this signaling pathway might explain the failure of medical therapy in BPH/LUTS patients. METHOD: Surgical BPH (S-BPH) was defined as benign prostatic tissue collected from the transition zone (TZ) of patients who failed medical therapy and underwent surgical intervention to relieve LUTS. Control tissue was termed Incidental BPH (I-BPH). I-BPH was TZ obtained from men undergoing radical prostatectomy for low-volume, low-grade prostatic adenocarcinoma (PCa, Gleason score ≤ 7) confined to the peripheral zone. All TZ tissue was confirmed to be cancer-free. S-BPH patients divided into four subgroups: patients on α-blockers alone, 5ARI alone, combination therapy (α-blockers plus 5ARI), or no medical therapy (none) before surgical resection. I-BPH tissue was subgrouped by prior therapy (either on α-blockers or without prior medical therapy before prostatectomy). We measured prostatic tissue levels of prostaglandins (PGF2α , PGI2 , PGE2 , PGD2 , and TxA2 ), quantitative polymerase chain reaction levels of mRNAs encoding enzymes within the PG synthesis pathway, cellular distribution of COX1 (PTGS1) and COX2 (PTGS2), and tested the ability of PGs to contract bladder smooth muscle in an in vitro assay. RESULTS: All PGs were significantly elevated in TZ tissues from S-BPH patients (n = 36) compared to I-BPH patients (n = 15), regardless of the treatment subgroups. In S-BPH versus I-BPH, mRNA for PG synthetic enzymes COX1 and COX2 were significantly elevated. In addition, mRNA for enzymes that convert the precursor PGH2 to metabolite PGs were variable: PTGIS (which generates PGI2 ) and PTGDS (PGD2 ) were significantly elevated; nonsignificant increases were observed for PTGES (PGE2 ), AKR1C3 (PGF2α ), and TBxAS1 (TxA2 ). Within the I-BPH group, men responding to α-blockers for symptoms of BPH but requiring prostatectomy for PCa did not show elevated levels of COX1, COX2, or PGs. By immunohistochemistry, COX1 was predominantly observed in the prostatic stroma while COX2 was present in scattered luminal cells of isolated prostatic glands in S-BPH. PGE2 and PGF2α induced contraction of bladder smooth muscle in an in vitro assay. Furthermore, using the smooth muscle assay, we demonstrated that α-blockers that inhibit alpha-adrenergic receptors do not appear to inhibit PG stimulation of GPCRs in bladder muscle. Only patients who required surgery to relieve BPH/LUTS symptoms showed significantly increased tissue levels of PGs and the PG synthetic enzymes. CONCLUSIONS: Treatment of BPH/LUTS by inhibition of alpha-adrenergic receptors with pharmaceutical α-blockers or inhibiting androgenesis with 5ARI may fail because of elevated paracrine signaling by prostatic PGs that can cause smooth muscle contraction. In contrast to patients who fail medical therapy for BPH/LUTS, control I-BPH patients do not show the same evidence of elevated PG pathway signaling. Elevation of the PG pathway may explain, in part, why the risk of clinical progression in the MTOPS study was only reduced by 34% with α-blocker treatment.


Assuntos
Sintomas do Trato Urinário Inferior/tratamento farmacológico , Prostaglandinas/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/tratamento farmacológico , Inibidores de 5-alfa Redutase/uso terapêutico , Antagonistas Adrenérgicos alfa/uso terapêutico , Idoso , Humanos , Sintomas do Trato Urinário Inferior/etiologia , Sintomas do Trato Urinário Inferior/metabolismo , Masculino , Pessoa de Meia-Idade , Hiperplasia Prostática/complicações , Hiperplasia Prostática/metabolismo , Falha de Tratamento
7.
Mol Cancer Ther ; 20(2): 398-409, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33298586

RESUMO

Castration-resistant prostate cancer can be treated with the antiandrogen enzalutamide, but responses and duration of response are variable. To identify genes that support enzalutamide resistance, we performed a short hairpin RNA (shRNA) screen in the bone-homing, castration-resistant prostate cancer cell line, C4-2B. We identified 11 genes (TFAP2C, CAD, SPDEF, EIF6, GABRG2, CDC37, PSMD12, COL5A2, AR, MAP3K11, and ACAT1) whose loss resulted in decreased cell survival in response to enzalutamide. To validate our screen, we performed transient knockdowns in C4-2B and 22Rv1 cells and evaluated cell survival in response to enzalutamide. Through these studies, we validated three genes (ACAT1, MAP3K11, and PSMD12) as supporters of enzalutamide resistance in vitro Although ACAT1 expression is lower in metastatic castration-resistant prostate cancer samples versus primary prostate cancer samples, knockdown of ACAT1 was sufficient to reduce cell survival in C4-2B and 22Rv1 cells. MAP3K11 expression increases with Gleason grade, and the highest expression is observed in metastatic castration-resistant disease. Knockdown of MAP3K11 reduced cell survival, and pharmacologic inhibition of MAP3K11 with CEP-1347 in combination with enzalutamide resulted in a dramatic increase in cell death. This was associated with decreased phosphorylation of AR-Serine650, which is required for maximal AR activation. Finally, although PSMD12 expression did not change during disease progression, knockdown of PSMD12 resulted in decreased AR and AR splice variant expression, likely contributing to the C4-2B and 22Rv1 decrease in cell survival. Our study has therefore identified at least three new supporters of enzalutamide resistance in castration-resistant prostate cancer cells in vitro.


Assuntos
Benzamidas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Benzamidas/farmacologia , Humanos , Masculino , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Transfecção
8.
Am J Transl Res ; 12(9): 5619-5629, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042443

RESUMO

Bone metastasis frequently occurs in advanced-stage prostate cancer (PCa) patients. Understanding the mechanisms that promote PCa-mediated bone destruction is important for the identification of therapeutic targets against this lethal disease. We found that forkhead box A2 (FOXA2) is expressed in a subset of PCa bone metastasis specimens. To determine the functional role of FOXA2 in PCa metastasis, we knocked down the expression of FOXA2 in PCa PC3 cells, which can grow in bones and elicit an osteolytic reaction. The PC3/FOXA2-knockdown cells generated fewer bone lesions following intra-tibial injection compared to control cells. Further, we found that FOXA2 knockdown decreased the expression of PTHLH, which encodes PTHrP, a well-established factor that regulates bone remodeling. These results indicate that FOXA2 is involved in PCa bone metastasis.

9.
Am J Clin Exp Urol ; 6(5): 172-181, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510969

RESUMO

Prostate cancer (PCa) is the leading cancer among men. Androgen Deprivation Therapy (ADT) is a common treatment for advanced PCa. However, ADT eventually fails and PCa relapses, developing into castration-resistant prostate cancer (CRPCa). Although alternative pathways such as cancer stem-cell pathway and neuroendocrine differentiation bypass androgen receptor (AR) signaling, AR remains the central player in mediating CRPCa. In this study, we identified a mechanism that retains AR signaling after androgen deprivation. The TRAMP SV40 T antigen transgenic mouse is a model for PCa. The expression of SV40 T-antigen is driven by the androgen-responsive, prostate specific, Probasin promoter. It has been recognized that in this model, T-antigen is still expressed even after androgen ablation. It is unclear how the androgen-responsive Probasin promoter remains active and drives the expression of T-antigen in these tumors. In our study, we found that the expression of Foxa2, a forkhead transcription factor that is expressed in embryonic prostate and advanced stage prostate cancer, is co-expressed in T-antigen positive cells. To test if Foxa2 activates AR-responsive promoters and promotes the expression of T-antigen, we established the prostate epithelial cells that stably express Foxa2, NeoTag1/Foxa2 cells. Neotag1 cells were derived from the Probasin promoter driven SV40 T-antigen transgenic mouse. We found ectopic expression of Foxa2 drives the T-antigen expression regardless of the presence of androgens. Using this model system, we further explored the mechanism that activates AR-responsive promoters in the absence of androgens. Chromatin immunoprecipitation revealed the occupancy of both H3K27Ac, an epigenetic mark of an active transcription, and Foxa2 at the known AR target promoters, Probasin and FKBP5, in the absence of androgen stimulation. In conclusion, we have identified a mechanism that enables PCa to retain the AR signaling pathway after androgen ablation.

10.
Cancer Res ; 77(6): 1331-1344, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28108510

RESUMO

Identification of factors that mediate visceral and bone metastatic spread and subsequent bone remodeling events is highly relevant to successful therapeutic intervention in advanced human prostate cancer. TBX2, a T-box family transcription factor that negatively regulates cell-cycle inhibitor p21, plays critical roles during embryonic development, and recent studies have highlighted its role in cancer. Here, we report that TBX2 is overexpressed in human prostate cancer specimens and bone metastases from xenograft mouse models of human prostate cancer. Blocking endogenous TBX2 expression in PC3 and ARCaPM prostate cancer cell models using a dominant-negative construct resulted in decreased tumor cell proliferation, colony formation, and invasion in vitro Blocking endogenous TBX2 in human prostate cancer mouse xenografts decreased invasion and abrogation of bone and soft tissue metastasis. Furthermore, blocking endogenous TBX2 in prostate cancer cells dramatically reduced bone-colonizing capability through reduced tumor cell growth and bone remodeling in an intratibial mouse model. TBX2 acted in trans by promoting transcription of the canonical WNT (WNT3A) promoter. Genetically rescuing WNT3A levels in prostate cancer cells with endogenously blocked TBX2 partially restored the TBX2-induced prostate cancer metastatic capability in mice. Conversely, WNT3A-neutralizing antibodies or WNT antagonist SFRP-2 blocked TBX2-induced invasion. Our findings highlight TBX2 as a novel therapeutic target upstream of WNT3A, where WNT3A antagonists could be novel agents for the treatment of metastasis and for skeletal complications in prostate cancer patients. Cancer Res; 77(6); 1331-44. ©2017 AACR.


Assuntos
Anticorpos Monoclonais/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/prevenção & controle , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata/prevenção & controle , Proteínas com Domínio T/antagonistas & inibidores , Proteína Wnt3A/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos SCID , Terapia de Alvo Molecular , Gradação de Tumores , Prognóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Células Tumorais Cultivadas , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Oncotarget ; 7(38): 61955-61969, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27542219

RESUMO

Numerous studies indicate that androgen receptor splice variants (ARVs) play a critical role in the development of castration-resistant prostate cancer (CRPC), including the resistance to the new generation of inhibitors of androgen receptor (AR) action. Previously, we demonstrated that activation of NF-κB signaling increases ARVs expression in prostate cancer (PC) cells, thereby promoting progression to CRPC. However, it is unclear how NF-κB signaling is activated in CRPC. In this study, we report that long-term treatment with anti-androgens increases a neuroendocrine (NE) hormone - gastrin-releasing peptide (GRP) and its receptor (GRP-R) expression in PC cells. In addition, activation of GRP/GRP-R signaling increases ARVs expression through activating NF-κB signaling. This results in an androgen-dependent tumor progressing to a castrate resistant tumor. The knock-down of AR-V7 restores sensitivity to antiandrogens of PC cells over-expressing the GRP/GRP-R signaling pathway. These findings strongly indicate that the axis of Androgen-Deprivation Therapy (ADT) induces GRP/GRP-R activity, activation NF-κB and increased levels of AR-V7 expression resulting in progression to CRPC. Both prostate adenocarcinoma and small cell NE prostate cancer express GRP-R. Since the GRP-R is clinically targetable by analogue-based approach, this provides a novel therapeutic approach to treat advanced CRPC.


Assuntos
Peptídeo Liberador de Gastrina/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores da Bombesina/metabolismo , Adenocarcinoma/metabolismo , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Progressão da Doença , Variação Genética , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/cirurgia , Splicing de RNA , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais , Transcrição Gênica
12.
Cancer Res ; 74(10): 2763-72, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24686169

RESUMO

In many patients with prostate cancer, the cancer will be recurrent and eventually progress to lethal metastatic disease after primary treatment, such as surgery or radiation therapy. Therefore, it would be beneficial to better predict which patients with early-stage prostate cancer would progress or recur after primary definitive treatment. In addition, many studies indicate that activation of NF-κB signaling correlates with prostate cancer progression; however, the precise underlying mechanism is not fully understood. Our studies show that activation of NF-κB signaling via deletion of one allele of its inhibitor, IκBα, did not induce prostatic tumorigenesis in our mouse model. However, activation of NF-κB signaling did increase the rate of tumor progression in the Hi-Myc mouse prostate cancer model when compared with Hi-Myc alone. Using the nonmalignant NF-κB-activated androgen-depleted mouse prostate, a NF-κB-activated recurrence predictor 21 (NARP21) gene signature was generated. The NARP21 signature successfully predicted disease-specific survival and distant metastases-free survival in patients with prostate cancer. This transgenic mouse model-derived gene signature provides a useful and unique molecular profile for human prostate cancer prognosis, which could be used on a prostatic biopsy to predict indolent versus aggressive behavior of the cancer after surgery.


Assuntos
NF-kappa B/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias da Próstata/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Metástase Neoplásica , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Transdução de Sinais
13.
Mol Oncol ; 7(6): 1019-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23916135

RESUMO

PURPOSE: Metastasis, the main cause of death from cancer, remains poorly understood at the molecular level. EXPERIMENTAL DESIGN: Based on a pattern of reduced expression in human prostate cancer tissues and tumor cell lines, a candidate suppressor gene (SPARCL1) was identified. We used in vitro approaches to determine whether overexpression of SPARCL1 affects cell growth, migration, and invasiveness. We then employed xenograft mouse models to analyze the impact of SPARCL1 on prostate cancer cell growth and metastasis in vivo. RESULTS: SPARCL1 expression did not inhibit tumor cell proliferation in vitro. By contrast, SPARCL1 did suppress tumor cell migration and invasiveness in vitro and tumor metastatic growth in vivo, conferring improved survival in xenograft mouse models. CONCLUSIONS: We present the first in vivo data suggesting that SPARCL1 suppresses metastasis of prostate cancer.


Assuntos
Proteínas de Ligação ao Cálcio/biossíntese , Proteínas da Matriz Extracelular/biossíntese , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Animais , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Proteínas da Matriz Extracelular/genética , Xenoenxertos , Humanos , Masculino , Metanálise como Assunto , Camundongos , Camundongos SCID , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Supressoras de Tumor/genética
14.
PLoS One ; 8(4): e60983, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577181

RESUMO

Patients with advanced prostate cancer almost invariably develop osseous metastasis. Although many studies indicate that the activation of NF-κB signaling appears to be correlated with advanced cancer and promotes tumor metastasis by influencing tumor cell migration and angiogenesis, the influence of altered NF-κB signaling in prostate cancer cells within boney metastatic lesions is not clearly understood. While C4-2B and PC3 prostate cancer cells grow well in the bone, LNCaP cells are difficult to grow in murine bone following intraskeletal injection. Our studies show that when compared to LNCaP, NF-κB activity is significantly higher in C4-2B and PC3, and that the activation of NF-κB signaling in prostate cancer cells resulted in the increased expression of the osteoclast inducing genes PTHrP and RANKL. Further, conditioned medium derived from NF-κB activated LNCaP cells induce osteoclast differentiation. In addition, inactivation of NF-κB signaling in prostate cancer cells inhibited tumor formation in the bone, both in the osteolytic PC3 and osteoblastic/osteoclastic mixed C4-2B cells; while the activation of NF-κB signaling in LNCaP cells promoted tumor establishment and proliferation in the bone. The activation of NF-κB in LNCaP cells resulted in the formation of an osteoblastic/osteoclastic mixed tumor with increased osteoclasts surrounding the new formed bone, similar to metastases commonly seen in patients with prostate cancer. These results indicate that osteoclastic reaction is required even in the osteoblastic cancer cells and the activation of NF-κB signaling in prostate cancer cells increases osteoclastogenesis by up-regulating osteoclastogenic genes, thereby contributing to bone metastatic formation.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , NF-kappa B/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/patologia , Microambiente Tumoral
15.
Mol Endocrinol ; 20(10): 2418-31, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16740652

RESUMO

Murine epididymal retinoic acid-binding protein [or lipocalin 5 (Lcn5)] is synthesized and secreted by the principal cells of the mouse middle/distal caput epididymidis. A 5-kb promoter fragment of the Lcn5 gene can dictate androgen-dependent and epididymis region-specific gene expression in transgenic mice. Here, we reported that the 1.8-kb Lcn5 promoter confers epididymis region-specific gene expression in transgenic mice. To decipher the mechanism that directs transcription, 14 chimeric constructs that sequentially removed 100 bp of 1.8-kb Lcn5 promoter were generated and transfected into epididymal cells and nonepididymal cells. Transient transfection analysis revealed that 1.3 kb promoter fragment gave the strongest response to androgens. Between the 1.2-kb to 1.3-kb region, two androgen receptor (AR) binding sites were identified. Adjacent to AR binding sites, a Foxa2 [Fox (Forkhead box) subclass A] binding site was confirmed by gel shift assay. Similar Foxa binding sites were also found on the promoters of human and rat Lcn5, indicating the Foxa binding site is conserved among species. We previously reported that among the three members of Foxa family, Foxa1 and Foxa3 were absent in the epididymis whereas Foxa2 was detected in epididymal principal cells. Here, we report that Foxa2 displays a region-specific expression pattern along the epididymis: no staining observed in initial segment, light staining in proximal caput, gradiently heavier staining in middle and distal caput, and strongest staining in corpus and cauda, regions with little or no expression of Lcn5. In transient transfection experiments, Foxa2 expression inhibits AR induction of the Lcn5 promoter, which is consistent with the lack of expression of Lcn5 in the corpus and cauda. We conclude that Foxa2 functions as a repressor that restricts AR regulation of Lcn5 to a segment-specific pattern in the epididymis.


Assuntos
Androgênios/metabolismo , Epididimo/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator 3-beta Nuclear de Hepatócito/metabolismo , Receptores do Ácido Retinoico/metabolismo , Animais , Sítios de Ligação/genética , Ensaio de Desvio de Mobilidade Eletroforética , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Mutagênese , Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Receptores do Ácido Retinoico/genética , Proteínas Plasmáticas de Ligação ao Retinol , Transfecção
16.
Mol Endocrinol ; 17(8): 1484-507, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12750453

RESUMO

Androgens and mesenchymal factors are essential extracellular signals for the development as well as the functional activity of the prostate epithelium. Little is known of the intraepithelial determinants that are involved in prostatic differentiation. Here we found that hepatocyte nuclear factor-3 alpha (HNF-3 alpha), an endoderm developmental factor, is essential for androgen receptor (AR)-mediated prostatic gene activation. Two HNF-3 cis-regulatory elements were identified in the rat probasin (PB) gene promoter, each immediately adjacent to an androgen response element. Remarkably, similar organization of HNF-3 and AR binding sites was observed in the prostate-specific antigen (PSA) gene core enhancer, suggesting a common functional mechanism. Mutations that disrupt these HNF-3 motifs significantly abolished the maximal androgen induction of PB and PSA activities. Overexpressing a mutant HNF-3 alpha deleted in the C-terminal region inhibited the androgen-induced promoter activity in LNCaP cells where endogenous HNF-3 alpha is expressed. Chromatin immunoprecipitation revealed in vivo that the occupancy of HNF-3 alpha on PSA enhancer can occur in an androgen-depleted condition, and before the recruitment of ligand-bound AR. A physical interaction of HNF-3 alpha and AR was detected through immunoprecipitation and confirmed by glutathione-S-transferase pull-down. This interaction is directly mediated through the DNA-binding domain/hinge region of AR and the forkhead domain of HNF-3 alpha. In addition, strong HNF-3 alpha expression, but not HNF-3 beta or HNF-3 gamma, is detected in both human and mouse prostatic epithelial cells where markers (PSA and PB) of differentiation are expressed. Taken together, these data support a model in which regulatory cues from the cell lineage and the extracellular environment coordinately establish the prostatic differentiated response.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica , Proteínas Nucleares/fisiologia , Próstata/fisiologia , Receptores Androgênicos/fisiologia , Fatores de Transcrição/fisiologia , Fosfatase Ácida , Proteína de Ligação a Androgênios/genética , Animais , Sequência de Bases , Sítios de Ligação , Elementos Facilitadores Genéticos/genética , Células Epiteliais/metabolismo , Fator 3-alfa Nuclear de Hepatócito , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Próstata/citologia , Antígeno Prostático Específico/genética , Neoplasias da Próstata/genética , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/genética , Ratos , Sequências Reguladoras de Ácido Nucleico , Ativação Transcricional , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...